Experiment Design and Training Data Quality of Inverse Model for Short-term Building Energy Forecasting

نویسندگان

  • Liang Zhang
  • Jin Wen
  • Can Cui
  • Xiwang Li
  • Teresa Wu
  • Liang ZHANG
  • Jin WEN
  • Xiwang LI
  • Teresa WU
چکیده

For data-driven building energy forecasting modeling, the quality of training data strongly affects a model’s accuracy and cost-effectiveness. In order to obtain high-quality training data within a short time period, experiment design, active learning, or excitation is becoming increasingly important, especially for nonlinear systems such as building energy systems. Experiment design and system excitation have been widely studied and applied in fields such as robotics and automobile industry for their model development. But these methods have hardly been applied for building energy modeling. This paper presents an overall discussion on the topic of applying system excitation for developing building energy forecasting models. For gray-box and white-box models, a model’s physical representations and theories can be applied to guide their training data collections. However, for black-box (puredata-driven) models, the training data’s quality is sensitive to the model structure, leading to a fact that there is no universal theory for data training. The focus of black-box modeling has traditionally been on how to represent a data set well. The impact of how such a data set represents the real system and how the quality of a training data set affect the performances of black-box models have not been well studied. In this paper, the system excitation method, which is used in system identification area, is used to excite zone temperature set-points to generate training data. These training data from system excitation are then used to train a variety of black-box building energy forecasting models. The models’ performances (accuracy and extendibility) are compared among different model structures. For the same model structure, its performances are also compared between when it is trained using typical building operational data and when it is trained using exited training data. Results show that the black-box models trained by normal operation data achieve better performance than that trained by excited training data but have worse model extendibility; Training data obtained from excitation will help to improve performances of system identification models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Short Term Load Forecasting by Using ESN Neural Network Hamedan Province Case Study

Abstract Forecasting electrical energy demand and consumption is one of the important decision-making tools in distributing companies for making contracts scheduling and purchasing electrical energy. This paper studies load consumption modeling in Hamedan city province distribution network by applying ESN neural network. Weather forecasting data such as minimum day temperature, average day temp...

متن کامل

Long-term Streamflow Forecasting by Adaptive Neuro-Fuzzy Inference System Using K-fold Cross-validation: (Case Study: Taleghan Basin, Iran)

Streamflow forecasting has an important role in water resource management (e.g. flood control, drought management, reservoir design, etc.). In this paper, the application of Adaptive Neuro Fuzzy Inference System (ANFIS) is used for long-term streamflow forecasting (monthly, seasonal) and moreover, cross-validation method (K-fold) is investigated to evaluate test-training data in the model.Then,...

متن کامل

Short and Mid-Term Wind Power Plants Forecasting With ANN

In recent years, wind energy has a remarkable growth in the world, but one of the important problems of power generated from wind is its uncertainty and corresponding power. For solving this problem, some approaches have been presented. Recently, the Artificial Neural Networks (ANN) as a heuristic method has more applications for this propose. In this paper, short-term (1 hour) and mid-term (24...

متن کامل

Application of a New Hybrid Method for Day-Ahead Energy Price Forecasting in Iranian Electricity Market

Abstract- In a typical competitive electricity market, a large number of short-term and long-term contracts are set on basis of energy price by an Independent System Operator (ISO). Under such circumstances, accurate electricity price forecasting can play a significant role in improving the more reasonable bidding strategies adopted by the electricity market participants. So, they cannot only r...

متن کامل

Combination of Transformed-means Clustering and Neural Networks for Short-Term Solar Radiation Forecasting

In order to provide an efficient conversion and utilization of solar power, solar radiation datashould be measured continuously and accurately over the long-term period. However, the measurement ofsolar radiation is not available to all countries in the world due to some technical and fiscal limitations. Hence,several studies were proposed in the literature to find mathematical and physical mod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016